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Abstract

Multimodal intent recognition aims to leverage diverse modal-
ities such as expressions, body movements and tone of speech
to comprehend user’s intent, constituting a critical task for
understanding human language and behavior in real-world
multimodal scenarios. Nevertheless, the majority of existing
methods ignore potential correlations among different modali-
ties and own limitations in effectively learning semantic fea-
tures from nonverbal modalities. In this paper, we introduce a
token-level contrastive learning method with modality-aware
prompting (TCL-MAP) to address the above challenges. To
establish an optimal multimodal semantic environment for
text modality, we develop a modality-aware prompting mod-
ule (MAP), which effectively aligns and fuses features from
text, video and audio modalities with similarity-based modal-
ity alignment and cross-modality attention mechanism. Based
on the modality-aware prompt and ground truth labels, the
proposed token-level contrastive learning framework (TCL)
constructs augmented samples and employs NT-Xent loss on
the label token. Specifically, TCL capitalizes on the optimal
textual semantic insights derived from intent labels to guide
the learning processes of other modalities in return. Exten-
sive experiments show that our method achieves remarkable
improvements compared to state-of-the-art methods. Addi-
tionally, ablation analyses demonstrate the superiority of the
modality-aware prompt over the handcrafted prompt, which
holds substantial significance for multimodal prompt learning.
The codes are released at https://github.com/thuiar/TCL-MAP.

Introduction
Intent recognition is a pivotal component in natural language
understanding(NLU), which is employed to classify intent
categories in goal-oriented scenarios based on text informa-
tion. Prior studies have extensively researched intent recogni-
tion and validated the significance of textual modality (Zhang
et al. 2021a,b). Recently, multimodal intent recognition has
been devised to analyze human intents by incorporating both
natural language and other nonverbal information (e.g. video
and audio). Contrary to depending on single modality, lever-
aging multiple modalities can provide a substantial amount
of information, providing a distinct advantage in accurately
identifying more intricate intent categories. Pioneering works
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in this field (Zhang et al. 2022; Saha et al. 2020) gather
multimodal data from the real world to create intent recog-
nition datasets, which affirms the crucial role of multimodal
information on intent recognition tasks.

To effectively leaverage the data from various modalities,
numerous methods have been proposed for multimodal lan-
guage understanding. As the state-of-the-art methods for
multimodal intent recognition, (Tsai et al. 2019; Hazarika,
Zimmermann, and Poria 2020; Rahman et al. 2020) utilize
Transformer-based techniques to integrate information from
different modalities into a unified feature. Another series of
works primarily focus on achieving significant representa-
tions by addressing the correlations among modalities. For
instance, (Dong et al. 2022) introduce a framework for cross-
modality contrastive learning aimed at narrowing the gap
between modalities and enhancing multimodal representa-
tions. Moreover, the latest work (Yu et al. 2023) aims to
incorporate knowledge from large-scale pre-trained models
and has demonstrated remarkable progress.

However, existing approaches are adept at capturing ba-
sic semantics such as emotions and encounter limitations in
capturing the deep semantic information inherent in intents
using multimodal data, owing to deficiencies in managing po-
tential correlations across distinct modalities and extracting
high-quality semantic features from nonverbal modalities.To
achieve a deeper understanding of human intents in the real
world, there are two main challenges. Firstly, given that in-
tent recognition is primarily a text-centric task, it is crucial
to explore the association between nonverbal modalities and
text modality. Secondly, mining semantic information from
video and audio modality poses a significant difficulty due to
the complex nature of the intent concept.

In this paper, we propose a Token-Level Contrastive Learn-
ing with Modality-Aware Prompting (TCL-MAP) approach,
which generates prompts based on video and audio modali-
ties to enhance the text representation and in return utilizes
the high-quality textual feature to guide other modalities
in learning semantic features. To tackle the first challenge,
we design a modality-aware prompting (MAP) module to
align different modalities based on their similarity and gener-
ate modality-aware prompt using a cross-modality attention
mechanism. The generated prompt combines video and audio
information with learnable parameters to establish a founda-
tional semantic environment for text representation learning,

ar
X

iv
:2

31
2.

14
66

7v
1 

 [
cs

.M
M

] 
 2

2 
D

ec
 2

02
3



Aww, man, then I won't get 
to hear Jonah lecture us.

BERT Embedding 
Layer

Text

Wav2vec 2.0

Audio

Swin Transformer

Video

…

…

𝑍!"#!

+

+

+

+

[MASK]

Label

Modality-Aware 
Prompting

𝐹$%&'(

BERT 
Encoder

Multimodal
Fusion
Layer

…

Cross Entropy Loss

Token-Level Contrastive Learning

z)*+,

z-*."- Optimization

Prompt-Based Augmentation Representation Learning

Augmented Sample Pair

Label 2 ··· Label 1 Label N

z-*."-

z)*+,

𝑍/0()/!

𝐹1'&"(

Normal Tokens

…

Augmented Tokens

𝑧)*+,2

𝑧-*."-2

Figure 1: The overview architecture of TCL-MAP. In the Prompt-Based Augmentation module, we first create the modality-aware
prompt using multimodal features, and then concatenate text tokens, prompt tokens and [MASK]/Label token to construct
augmented pair. In the Representation Learning module, we extract the refined tokens for classification and conduct contrastive
learning between the [MASK] token and the Label token.

mitigating the need for labor-intensive prompt engineering.
For the second challenge, we utilize a token-level contrastive
learning framework (TCL) which leverages premium super-
vised signals to facilitate the extraction of semantic informa-
tion. Specifically, TCL initially constructs augmented sam-
ples by concatenating the modality-aware prompt and ground
truth labels with the original text. Subsequently, TCL extracts
the ground truth token from BERT (Devlin et al. 2018) to
guide the process of semantic feature learning through the
application of NT-Xent (Sohn 2016) loss.

Extensive experiments are performed on MIntRec (Zhang
et al. 2022) and MELD-DA (Saha et al. 2020) datasets, which
demonstrates the significant improvements achieved by our
methods over the state-of-the-art methods. Moreover, abla-
tion analyses reveal that the modality-aware prompt gener-
ated by MAP outperforms the handcrafted prompt, thereby
contributing to the advancement of multimodal prompt learn-
ing. Our contributions can be summarized as follows:

• We design a modality-aware prompting module to gener-
ate modality-aware prompts using video and audio modal-
ities, which establishes an optimal multimodal semantic
context for text modality.

• We propose a token-level contrastive learning framework
for leveraging semantic information from the ground truth
label to guide other modalities in learning semantic repre-
sentations. To the best of our knowledge, this is the first
attempt that utilizes prompt learning to create premium
supervised signals for contrastive learning.

• Comprehensive experiments conducted on two challeng-
ing datasets show that the proposed method achieves state-
of-the-art performance on the multimodal intent recogni-
tion task.

Related Works

Multimodal Fusion Methods

Multimodal fusion techniques strive to achieve high-quality
multimodal representations through effective fusion pro-
cesses. Traditional approaches (Zadeh et al. 2017; Liu et al.
2018; Hou et al. 2019) harnesses the representational capabili-
ties of tensors for multimodal data representation, showcasing
their representational capabilities. However, these methods
face the challenge of striking a balance between computa-
tional complexity and the quality of tensor representation. To
solve the problem, MFN (Zadeh et al. 2018) first learns view-
specific interactions and leverages an attention mechanism
with a multi-perspective gated memory.

Recent methods are based on Transformer for multi-
modal fusion. By incorporating attention mechanism, MulT
(Tsai et al. 2019) addresses the challenge of non-aligned
multi-modal sequences and MISA (Hazarika, Zimmermann,
and Poria 2020) aims to learn representations that exhibit
both modality-invariant and modality-specific characteristics.
Moreover, MAG-BERT (Rahman et al. 2020) introduces an
attachment mechanism to enhance the fine-tuning process of
BERT (Devlin et al. 2018). Subsequently, researchers start to
prioritize the interactions within individual modalities. For
example, MMIM (Han, Chen, and Poria 2021) focuses on
the correlations between unimodal inputs and multimodal
fusion features through maximizing the mutual information.
To separately address the relationships between each pair
of modalities, BBFN (Han et al. 2021) integrates two bi-
modal fusion modules along with a gated control mechanism.
Given that top-down interactions remain unaccounted in pre-
vious approaches, MMLatch (Paraskevopoulos, Georgiou,
and Potamianos 2022) addresses this limitation by incorpo-
rating a feedback mechanism in the forward pass.



Prompt Learning
Prompt learning originates from nature language process-
ing (NLP) and is adopted to elicit useful information from
pre-trained language models for downstream tasks. CoOp
(Zhou et al. 2022b) first employ prompt learning in adapt-
ing large vision-language models, garnering the interest of
numerous researchers. Subsequently, CoCoOp (Zhou et al.
2022a) addresses the weak generalizability issue of CoOp by
generating an input-conditional token for each sample. To
further incorporate contextual information into the prompt,
DenseCLIP (Rao et al. 2022) introduces a transformer en-
coder within the CoCoOp framework to enhance the correla-
tion between image embeddings and prompt tokens. Recent
works (Wang et al. 2022; Li et al. 2022; Gan et al. 2023)
have applied prompt learning to various domains in com-
puter vision. Different from prior approaches, our method
pioneers the application of prompt learning on multimodal
tasks without reliance on extensive pre-trained models. More-
over, our research demonstrates the substantial impact of
prompt learning in enhancing multimodal representations.

Contrastive Learning
Contrastive Learning emphasizes similarities and differences
between data pairs, pulling similar pairs closer and pushing
dissimilar pairs apart. Early approaches (Wu et al. 2018; Ye
et al. 2019; Tian, Krishnan, and Isola 2020) lays the diverse
foundation for contrastive learning’s evolution, encompass-
ing various models, loss functions, and pretext tasks. Subse-
quently, MoCo (He et al. 2020) views contrastive learning as
dictionary look-up and exploits a dynamic dictionary with a
queue and a momentum encoder. Notably, SimCLR (Chen
et al. 2020) proposes a simple framework for contrastive
learning using diverse data augmentation operations and a
nonlinear projection head.

Recent methodologies aim to eliminate the necessity for
negative examples and improve the efficacy of feature ex-
traction. To enhance robustness in the presence of diverse
augmentations, BYOL (Grill et al. 2020) proposes a slow-
moving average target network output using the online net-
work’s output, effectively avoiding the need for negative pairs.
Taking a step further, SimSiam (Chen and He 2021) discards
negative pairs and the momentum encoder, relying on identi-
cal encoders and stop-gradient mechanism to prevent output
collapse. Besides, DINO (Caron et al. 2021) employs vision
transformers as the foundation for self-supervised learning,
implementing self-distillation without requiring any labels.

Method
Overview
In this section, we describe the architecture of our proposed
Token-Level Contrastive Learning with Modality-Aware
Prompting (TCL-MAP) method. As illustrated in Figure 1,
the framework comprises two components: Prompt-Based
Augmentation and Token-Level Contrastive Learning & In-
tent Recognition. The former is presented following the order
of Feature Extraction, Modality-Aware Prompting, and Aug-
mented Sample Construction while the latter elucidated from

the dual perspectives of Token-Level Contrastive Learning
and Intent Recognition.

Prompt-Based Augmentation
Feature Extraction For the text modality, we align with es-
tablished practices in text intent recognition methods (Zhang
et al. 2023a,b), using BERT (Devlin et al. 2018), a pow-
erful pre-trained language model, to extract the features.
To capitalize on the fine-tuning process for mining seman-
tic information from augmented samples in later stages,
we exclusively rely on the embedding layer to extract fea-
tures from the text modality at this step. Specifically, Given
an input utterance t, we get all the token representations
Ztext = [CLS, z1, . . . , zlt ] ∈ R(lt+1)×dt from the embed-
ding layer of BERT:

Ztext = BERTEmbedding(t), (1)

where Z denotes the token list, zi is the ith token, CLS is the
vector for text classification, lt is the sequence length of text
and dt is the embedding size.

To extract video features, we employ a representative im-
age classification model, Swin-Transformer (Liu et al. 2021),
which is pre-trained on ImageNet (Deng et al. 2009). Con-
cretly, we begin by dividing the raw video frames and get
rid of [f1, f2, . . . , flv ]. Subsequently, we obtain video fea-
ture Fvideo ∈ Rlv×dv by processing each frame fi through
Swin-Transformer to extract the feature from the last hidden
layer:

Fvideo = Swin-Transformer([f1, f2, . . . , flv ]), (2)

where fi denotes the ith frame, lv is the number of frames
and dv is the video feature dimension. Fvideo is composed
by concatenating all individual frame features fi.

Ultimately, we utilize a well-established pre-trained speech
recognition model, Wav2Vec 2.0 (Baevski et al. 2020), to
take the output of the last hidden layer as the audio feature
Faudio ∈ Rla×da for each audio segment a:

Faudio = Wav2Vec 2.0(a), (3)

where la is the sequence length and da is the audio feature
dimension.

Modality-Aware Prompting Prior researches (Zhou et al.
2022b,a; Rao et al. 2022) have empirically demonstrated the
effectiveness of prompt learning with multimodal data, yet
they tend to ignore the inherent correlations among different
modalities. Inspired by this, we propose the Modality-Aware
Prompting (MAP) module which integrates text, video and
audio features comprehensively to attain a premium prompt
representation. As shown in Figure 2, MAP consists of two
steps: Similarity-Based Modality Alignment and Prompt Gen-
eration.

In the Similarity-Based Modality Alignment step, follow-
ing (Zhou et al. 2022a; Rao et al. 2022; Graves et al. 2006),we
initially employ D learnable tokens to approximate the actual
text prompts, aiming at avoiding the substantial burden of
prompt engineering and integrating multimodal information
into the prompt. Then we employ individual standardization
layers for each modality’s feature, which incorporates a CTC
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Figure 2: The details of Modality-Aware Prompting (MAP) module. We align multimodal features based on the content by
computing the similarity matrix as weights and enhance correlations between modalities through a cross-modality transformer to
create the modality-aware prompt.

(Graves et al. 2006) module for length normalization and an
MLP to achieve consistent feature dimensions. Denoting the
learnable tokens, video feature and audio feature as Ftoken,
Fvideo and Faudio, the process can be formulated as:

{T,V,A} = MLP(CTC({Ftoken,Fvideo,Faudio})), (4)

where T,V,A ∈ RL×H denotes the standardized fea-
tures with length L and dimension H . Utilizing features
within the same space, we compute two similarity matrixs
MTV ,MTA ∈ RL×L based on the dot product results of
normalized vectors:

MTV = αTV · ( T
max

i
||Ti||2

)(
VT

max
i

||Vi||2
), (5)

MTA = αTA · ( T
max

i
||Ti||2

)(
AT

max
i

||Ai||2
), (6)

where αTV , αTA are threshold hyper-parameters and matrix
elements M(ij)

TV denotes the similarity between Ti and Tj .
The matrix is subsequently subjected to a softmax activation
to identify crucial features, serving as weights to reduce the
discrepancy between nonverbal modalities and the learnable
tokens:

V̂ = MLP(SoftMax(MTV )V), (7)

Â = MLP(SoftMax(MTA)A), (8)

where V̂, Â ∈ RL×H denotes the aligned vectors and we
designate T̂ = T.

During the Prompt Generation step, we leverage cross-
modality attention mechanism to effectively fuse features
from three modalities into a modality-aware prompt Zprompt.
Following (Tsai et al. 2019), We take T̂ as the query, V̂
as the key, and Â as the value for the input of the multi-
head attention. The attention of the ith head is calculated as
follows:

Attentioni(Qi,Ki,Vi) = SoftMax(
QiK

T
i√

dk
)Vi, (9)

where Qi,Ki,Vi are projected inputs and dk denotes the
feature dimension H . The attentions of all the heads are con-
catenated and sequentially processed through an Add&Norm
layer, a Feed Forward layer, and another Add&Norm layer to
produce the ultimate outputs, which constitute the modality-
aware prompts Zprompt.

Augmented Sample Pair Construction It has been shown
the superiority of text modality in achieving expressive repre-
sentations for intent recognition (Zhang, Xu, and Lin 2021).
Inspired by this, we propose a new data augmentation method,
which obtains representations of the ground truth intent la-
bels within the semantic space provided by the text modality.
Furthermore, to impose additional constraints by establishing
an optimal multimodal semantic environment, we employ the
modality-aware prompt to influence the label token zlabel. To
sum up, the augmented sample Z̃ is formed by concatenating
the original text tokens Ztext, the modality-aware prompt to-
kens Zprompt, and the ground truth label token zlabel, while
the normal sample Z replaces zlabel with the [MASK] token
zmask:

Z̃ = Ztext ⊕ Zprompt ⊕ [zlabel], (10)

Z = Ztext ⊕ Zprompt ⊕ [zmask], (11)

where ⊕ denotes the concatenation operation.

Representation Learning
Token-Level Contrastive Learning To refine the aug-
mented sample Z̃, we utilize a powerful multimodal fusion
layer MAG-BERT (Rahman et al. 2020) to incorporate infor-
mation from nonverbal modalities. For the normal sample Z,
we sorely leverage the encoder layer of BERT (Devlin et al.
2018) to ensure the stability of textual semantics. After the
refinement, we extract zlabel and zmask from their respective
positions to construct the pair (zi, zj) for each sample and
employ the NT-Xent (Sohn 2016) loss to enhance the sim-
ilarity estimation within the semantic space. This involves
bringing tokens from the same pair closer while pushing
apart tokens that do not belong to the same pair. Assuming N
represents the batch size, we can obtain a total of 2N tokens



Methods MIntRec MELD-DA
ACC (%) WF1 (%) WP (%) R (%) ACC (%) WF1 (%) WP (%) R (%)

MAG-BERT 72.65 72.16 72.53 69.28 60.63 59.36 59.80 50.01
MISA 72.29 72.38 73.48 69.24 59.98 58.52 59.28 48.75
MulT 72.52 72.31 72.85 69.24 60.36 59.01 59.44 49.93

TCL-MAP 73.62 73.31 73.72 70.50 61.75 59.77 60.33 50.14
∆ 0.97↑ 0.93↑ 0.24↑ 1.22↑ 1.12↑ 0.41↑ 0.53↑ 0.13↑

Table 1: Multimodal intent recognition results on the MIntRec dataset and the MELD-DA dataset. ∆ represents the maximum
enhancement attained by our method compared to the baseline across the evaluation metrics.

Methods Complain Praise Apologise Thank Criticize Care Agree Taunt Flaunt Oppose Joke

MAG-BERT 67.65 86.03 97.76 96.52 49.02 85.59 91.60 15.78 47.09 33.97 37.54
MISA 63.91 86.63 97.78 98.03 53.44 87.14 92.05 22.15 46.44 36.15 38.74
MulT 65.48 84.72 97.93 96.83 49.72 88.12 92.23 26.12 48.91 34.68 33.95
TCL-MAP 68.70 87.20 97.70 97.00 51.30 86.80 93.10 17.20 50.80 35.90 29.00

Human 80.08 93.44 96.15 96.90 72.21 96.09 87.21 65.55 78.10 69.04 72.22

Methods Inform Advise Arrange Introduce Comfort Leave Prevent Greet Ask for help

MAG-BERT 71.00 69.30 63.82 67.42 76.43 75.77 85.07 91.06 64.44
MISA 70.18 69.56 67.32 67.22 78.78 77.23 83.30 82.71 67.57
MulT 70.85 69.43 65.44 71.19 76.44 75.58 81.68 86.65 69.12
TCL-MAP 72.80 68.90 65.40 68.40 79.80 83.40 83.60 90.10 66.40

Human 79.69 87.14 81.40 84.09 95.95 97.06 86.43 94.15 88.54

Table 2: F1-Score (%) comparison between baselines and our method for each class of MIntRec. For the results of our method,
bold indicates the best performance while underlining indicates the second best performance within each class.

using the aforementioned approach. The contrastive loss is
computed by:

lij = − log
exp (sim (zi, zj) /τ)∑2N

k=1 1[k ̸=i] exp (sim (zi, zk) /τ)
, (12)

Lcon = − 1

2N

∑
i,j

(lij + lji), (13)

where 1[k ̸=i] is an indicator function evaluating to 1 iff k ̸= i,
sim(·, ·) denotes the cosine similarity between two vectors
and τ denotes the temperature hyper-parameter.

Classification Adopting the widely-used approach, we uti-
lize the mean-pooling feature z̄ of the normal tokens Z for
classification and use a standard entropy loss to optimize the
framework:

Lcls = − 1

N

N∑
i=1

log
exp(ϕ(z̄)yi

)∑I
j=1 exp(ϕ(z̄)j)

, (14)

where N denotes the batch size, ϕ(·) is the classifier with
a linear layer. yi is the label of the ith sample, and I is the
number of labels. Ultimately, The overall learning of TCL-
MAP is accomplished by minimizing the following loss:

L = Lcon + Lcls. (15)

Experiments
Datasets
We conduct experiments on two challenging multimodal
datasets to evaluate our proposed framework.

MIntRec MIntRec (Zhang et al. 2022) is a fine-grained
dataset for multimodal intent recognition with 2,224 high-
quality samples with text, video and audio modalities across
20 intent categories. We follow the dataset splits consisting
of 1,334 samples for training, 445 samples for validation, and
445 samples for testing.

MELD-DA MELD-DA (Saha et al. 2020) is a large-scale
dataset for dialogue act classification, comprising 9988 mul-
timodal samples. The dataset is divided into a training set of
6,991 samples, a validation set of 999 samples and a test set
of 1,998 samples. All data are annotated with 12 common
dialogue act labels.

Baselines
Following (Zhang et al. 2022), we use the following state-
of-the-art multimodal fusion methods as the baselines: (1)
MAG-BERT (Rahman et al. 2020) presents an efficient at-
tachment for pre-trained language models to expand the capa-
bilities to fine-tune on multimodal representations; (2) MulT
(Tsai et al. 2019) utilizes directional pairwise cross-modality



Modules MIntRec MELD-DA
SBMA MAP TCL ACC (%) WF1 (%) WP (%) R (%) ACC (%) WF1 (%) WP (%) R (%)

✓ ✓ 73.15 72.73 73.02 69.82 61.24 59.32 59.58 49.89
✓ 72.67 72.31 72.81 69.78 60.40 58.69 59.78 49.63

✓ ✓ 72.13 71.80 72.50 68.80 61.26 59.54 59.97 50.09

✓ ✓ ✓ 73.62 73.31 73.72 70.50 61.75 59.77 60.33 50.14

Table 3: Ablation experiments of modules in TCL-MAP on the MIntRec dataset and the MELD-DA dataset. SBMA stands for
Similarity-Based Modality Alignment, MAP stands for Modality-Aware Prompt and TCL stands for Token-Level Contrastive
Learning. With SBMA incorporated into MAP, there exist three distinct settings.

attention without explicit alignment to address interactions
between multimodal sequences; (3) MISA (Hazarika, Zim-
mermann, and Poria 2020) captures both modality-invariant
and modality-specific features from each modality and subse-
quently fuses them with self-attention mechanism.

Evaluation Metrics
We adopt accuracy (ACC), weighted F1-score (WF1),
weighted precision (WP) and recall (R) to evaluate the model
performance, which is commonly used in classification tasks.
Considering the imbalance across different categories, for the
second and the third metrics, we present the scores weighted
by the number of samples in each class. Higher values indi-
cate improved performance across all metrics.

Experimental Settings
For the implementation of our proposed method, we utilize
bert-base-uncased and wav2vec2-base-960h from Hugging-
face Library (Wolf et al. 2019) to extract text and audio
features and swin b pre-trained on ImageNet1K (Deng et al.
2009) from Torchvision Library (maintainers and contribu-
tors 2016) to extract video features. The training batch size
is set to 16, while the validation and test batch sizes are both
set to 8. For the total loss L, we employ AdamW (Loshchilov
and Hutter 2017) to optimize the parameters.

Results
We conduct experiments on both the MIntRec dataset and the
MELD-DA dataset, comparing our approach with state-of-
the-art baselines. The results are presented in Table 1 with the
optimal outcomes highlighted in bold, and the enhancements
of our method over the top-performing baseline are indicated
by ∆.

Firstly, we observe the overall performance. As indicated
by the results, our approach has consistently outperformed
the current state-of-the-art methods across all four metrics
on both datasets, demonstrating significant advancements.
Secondly, on the MIntRec dataset, our approach demonstrates
enhancements of 0.97% on ACC, 0.93% on WF1 and 1.22%
on R, which indicates the robust capability of our approach to
effectively leverage multimodal information for the extraction
and identification of intricate intents in real-world scenarios.
Thirdly, on the MELD-DA dataset, our method also achieves
notable improvements on both ACC and WP metrics, despite
the presence of challenging “Others” label which is difficult

to distinguish. This observation showcases the effectiveness
of our method in recognizing ambiguous intents such as
dialogue acts.

Discussion
Effectiveness of Each Module
To further analyze the individual contributions of the modules
within TCL-MAP to the overall performance, we conducted
the following ablation experiments and the results are illus-
trated in Table 3.

Similarity-Based Modality Alignment To assess the ef-
fectiveness of similarity-based modality alignment, we re-
place the alignment method with a CTC module (Graves
et al. 2006) which aligns multimodal features solely from
a temporal perspective and disregards the correlations. As
indicated by the results, the performance of TCL-MAP ex-
hibites a reduction of more than 0.50% across most metrics
for both datasets. The most significant decrease, amounting
to 0.75%, is observed in the WP metric for the MELD-DA
dataset. These observations illustrate the effectiveness of
our proposed similarity-based modality alignment in align-
ing multimodal features and facilitating the extraction of
semantic information. Moreover, even without the presence
of similarity-based modality alignment, TCL-MAP continues
to achieve superior results on the MIntRec dataset, underscor-
ing the efficacy of the other modules.

Modality-Aware Prompting In this setting, we remove
modality-aware prompting module and directly concatenate
the original text tokens with the [MASK]/Label token as
the augmented pair. We note more substantial reductions on
MIntRec, such as a 0.95% decrease on ACC and a 1.00% de-
crease on WF1. Meanwhile, the performance on MELD-DA
experiences notable declines on ACC, WF1 and WP metrics.
We attribute this to the fact that the optimal semantic environ-
ment created by our modality-aware prompting module aids
in filtering out irrelevant semantics within the [MASK]/Label
token, which makes the token-level contrastive learning more
precise.

Token-Level Contrastive Learning In the absence of
token-level contrastive learning, we exclude the contrastive
learning loss Lcon from the total loss L and proceed with the
learning process guided by classification. In this experimen-
tal setup, all of the four metrics decrease by 1.49%, 1.51%,



1.22% and 1.70% on MIntRec and the ACC metric and the
WP metric decrease by 0.49% and 0.36% on MELD-DA, in-
dicating a significant decline on performance. The experimen-
tal results suggest that our introduced token-level contrastive
learning effectively leverages the rich semantic information
within the ground truth labels to guide the learning process
of nonverbal modalities and simultaneously optimizes fea-
ture representations together with the classification guidance,
leading to improved performance.

Performance of Fine-grained Intent Classes

To examine the performance of our method in each fine-
grained intent classes, we compare the F1 scores of TCL-
MAP and baseline methods for each intent class in MIntRec.
As shown in Table 2, the results are obtained by averaging
the scores over ten runs of experiments with different random
seeds and for the scores of TCL-MAP we mark the best
results in bold and the second best results with underlines
within each class.

To begin with, we analyze the comprehensive results of our
proposed TCL-MAP in comparison to the baseline methods.
Remarkably, across all 20 intent categories, our approach
attains top-2 scores in 13 categories, comprising 7 highest
scores and 6 second highest scores, which indicates that
TCL-MAP achieves better performance than the majority of
baselines across various classes. Specifically, in categories
like“Complain”, “Agree” and “Leave”, TCL-MAP consis-
tently outperforms the best baseline by over 1%. Significantly,
the “Leave” category exhibits the most substantial improve-
ment of 7.63%. The significant gains can be attributed to
TCL-MAP’s utilization of modality-aware prompts for better
text representation, which in turn enhances video and audio
learning through token-level contrastive learning. Neverthe-
less, in the “Taunt” and “Joke” categories, TCL-MAP seems
to provide less assistance in recognizing the intent, which
could be caused by a combination of factors, including the
limited availability of data within these categories and the
intricate nature of the intents themselves.

On the other hand, we evaluate the efficacy of TCL-MAP
in comparison to the human performance. From the results,
we can observe that humans achieve the best performance in
the majority of intent categories, which confirms the strong
ability of humans to process multimodal information and in-
fer intents through them. However, TCL-MAP surpasses hu-
man performance in the ”Apologize,” ”Thank,” and ”Agree”
classes, showcasing the stability of our method when han-
dling challenging samples where humans may make mistakes.
In addition, TCL-MAP has approached human performance
in intent categories (e.g. “complain”, “praise” and “care”)
which involve distinct emotional aspects and also achieved
comparable performance to humans in intent categories (e.g.
“Inform”, “leave” and “prevent” ) which require an under-
standing of actions. These findings further validate the capa-
bility of TCL-MAP to effectively extract fearures related to
human intents from raw multimodal data, such as expressions,
tone of speech and movements.

Figure 3: The comparison between Handcraft Prompt and
Modality-Aware Prompt

Comparison between Handcraft Prompt and
Modality-Aware Prompt
To further analyze the superiority of our modality-aware
prompt, we conduct experiments with handcrafted prompt
and modality-aware prompt respectively. Concretly, we select
the MIntRec dataset for our experiments, driven by the fact
that certain labels (e.g. “Others”) in the MELD-DA dataset do
not strictly represent intent categories. To make comparison,
we design two handcraft prompts aimed at expressing ideas
or intents, “I want to” and “I intend to”, which maintain the
same positions and lengths with the modality-aware prompt.
Besides, we conduct an additional set of experiments using
[MASK] as the prompt to demonstrate the effectiveness.

As shown in Figure 3, we observe a substantial perfor-
mance advantage in the model that employs the modality-
aware prompt in comparison to models using handcrafted
prompts, thanks to better integration of non-textual modali-
ties enhancing textual intent semantics extraction. Conversely,
the [MASK] prompt shows a notable performance decline
compared to handcrafted prompts, highlighting the risk of
inappropriate prompts misleading intent understanding. Our
modality-aware prompt incorporates the instance-conditional
prompt concept of CoCoOp (Zhou et al. 2022a), thereby
mitigating this drawback.

Conclusion
In this paper, we propose a novel Token-Level Contrastive
Learning with Modality-Aware Prompting (TCL-MAP)
method for multimodal intent recognition. By strengthen-
ing the correlations among modalities, our method generate
the modality-aware prompt to construct an optimal multi-
modal semantic space for enhancing the refinement of the
text modality. In return, the attained textual representation,
enriched with semantics from the ground truth label token,
guides the learning process of nonverbal modalities through
the token-level contrastive learning. Extensive experiments
on two benchmark datasets demonstrate that our approach
outperforms state-of-the-art methods and carries significant
implications for multimodal prompt learning.
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